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ABSTRACT

This paper presents a formulation for identification of
linear multivariable systems from a single set of input-
output data. The identification method is formulated with
the mathematical framework of learning identification,
by extension of the repetition domain concept to include
shifting time intervals. This approach contrasts with
existing learning approaches that require data from
multiple experiments. In this method, the system input-
output relationship is expressed in terms of an observer,
which is made asymptotically stable by an embedded
real eigenvalue assignment procedure. Through this
relationship, the Markov parameters of the observer are
identified. The Markov parameters of the actual system
are recovered from those of the observer, and then used
10 obtain a state space model of the system by standard
realization techniques. The basic mathematical
formulation is derived, and numerical examples
presented to illustrate the proposed method.

INTRODUCTION

The aim of Icarning systcm identification is to
provide mcthods to improve identification of system
paramecters as new data in the form of input-output
mcasurcments are available. New information regarding
the system characleristics may come from multiple
cxperiments. For system identification of flexible
structurcs, multiple experiments arc usually performed to
develop or improve a mathematical representation. Due
to structural complexity and data irregularitics such as
slight non-lincaritics, instrumentation crrors, background
noiscs, and repetitive disturbances, multiple tests are used
to reduce the irregularity effects on the identificd model
parameters. The conventional approach is to average data
sets from multiple experiments with the hope that the
averaged data will reduce the irregularity effects. In
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lcaming identification, ncw information from successive
experiments arc uscd to effectively improve current
identification result. In fact, current work in learning
identification falls within this conceptual framework.
They require the availability of diffcrent input-output sets
of data from diffcrent experiments of gencrally short
duration. However, new information about the system
need not come from new experiments, but rather it may
be derived from a single experiment of extended duration.
This motivates the development of an identification
algorithm using a single set of input-output data.
Originally motivated by the lcarning problem, the
algorithm is derived using the mathematical framework
and techniques of lcarning control and system
identification, Refs. [1-9], and related in general concepts
to identification methods proposed in Refs. [10,11]. In
particular, this requires the extension of the concept of the
repetition domain to shifting time intervals.

In usual identification techniques, the system time
domain parameters are determined from input-output data.
In learning system identification, however, the parameters
of intercst to be identified are the Markov parameters.
Once this step is completed, standard realization
procedurcs can then be used to realize the system time
domain paramcters. This shifting emphasis on
identification of the Markov parameters offers some
advantages. First, there is no ambiguity in thc dimensions
the Markov parameters. Second, in the learning
formulation, thc Markov parameters arc rclatcd to input-
output data by a simple linear relation, hence many
existing techniques can be applicd. Third, for a given
lincar system, the Markov paramcters arc unique and
invariant with respect to any coordinate transformation of
the state vectors.

In this paper, a treatment of this problem is presented
1o identify a linear multivariable system in statc space
format by first identifying its Markov paramcters. From a
single sct of input-output data, direct solution of the
system state space matrices is non-trivial for a general
system of completely unknown characters. However,
when additional information about the system is imposed,
the mathematical problem becomes simplificd. For clarity
of exposition, identification procedures arc presented for
the following three cases of increasing complexitics.
First, the order of the system is known, and is cqual to
the number of outputs. Sccond, the order of the sysicm is



not known, but the system is known to be asymptotically
stable. Third, the order is known, but no assumption on
the stability of the system is madc. The resultant scheme
is rccursive coupled with an eigenvalue assignment
procedure, and is based on techniques developed in the first
two cascs. The algorithm has an cmbedded obscrver
structurc with pole placement. It is cmphasized here that
the role of the obscrver structure is not to provide
cstimates of the system states for identification, but rather
to provide by design a set of asymptotically stable auto-
regressive moving average cquations whose parameters
can be identified. These parameters contain in them the
desired information about the actual system. The initial
assumption regarding the system order can be later
removed by an iterating process, or by knowledge of an
upper bound on the effective order of the system.

The Markov parameters of a lincar system in state
spacc format are related to the systcm impulse response
functions which can be used in modal identification. From
the identificd Markov parameters, the modal parameters of
the systcm such as natural frequencies, modal damping,
and modc shapes can be deduced by standard realization
procedures, e.g., the Eigensystem Realization Algorithm
(ERA), Refs. [12,13].

STATEMENT OF THE PROBLEM

Consider a general discretc multivariable linear
system expressed in state space format as

x(k+1) = Ax(k) + Bu(k)
¥(k) = Cx(k)

)

wherc x € R", ye RY, ue R™ The number of inputs
m, and of outputs ¢ are known, the order of the system »n
is in gencral assumed not known, and neither are the
systcm matrices A, B, C. Starting from some arbitrary,
possibly unknown initial state x(0), the system (1) yiclds
a scquence of outputs y(i), when driven by some known
scquence of inputs u(i-1),i=1, 2, 3, ... for an extended
amount of time. The main objective of the problem is to
rccover the sct of Markov parameters of the sysiem
CB, CAB, ..., CA”'B for a given value of p. For
purpose of identification, knowledge of a sufficicnt
number of the systcm Markov paramcicers is adcquate 10
deduce a state variable description of the sysiem, hence
completely characterizes the system of interest.

MATHEMATICAL FORMULATION

First, the sct of known input-output data is divided
into intervals of p time steps ecach. Fori=1, 2, ..., p, the
solution to (1) is

i-1 o
x()) = A'x(©0) + Y, A™"'Bu(r) @
=0

For the next interval, i = p+1, p+2, ..., 2p, the solution
is writicn as )

i-(p+1)
) =A"xp)+ Y, AT VBu(rep) ()

=0

Introducc a repetition variable j, and a new time step
variablc £, so that the gencral solution to Eq. (1) for the
first, second, and all subscquent intervals can be expressed
as

i-(jp+1)
(D) =A"xjp)+ ¥, AP VBu(14jp) (@)

=0

fori=jp+k j=0,12,..,k=12,..,p Atany time
step { = jp + k, the state vector x(i) is wrilten as

x(jp+k) =x{k) and  x(jp) = x,(0) ®)
and similarly for y(jp+k). Associated with cach state

vector x(i) is an input vector u(i-1) which is also rewriticn
in terms of j and k as

u(i-1) = ujlk-1) ©

Applying the definitions in (5) and (6) to (4), one obtains

the following description of the system in the repctition
domain

Xir1 = A% (0) + P g1 )

where
2= [x") 2@ .. @)
k=[470) W) ... W)

A=:AT (A Z)T (A")T]T

B 0
p=|AB_ B
| AP'B APB ... B

using yj(k) = Cx;(k), the cquivalent output description to
(Mis

Yjs1 = _Cij+l (0) + Po Kj+1 (8)
where
T
2=[y7)y"@ ...y

C=diag[C C .. C] P,=C P



CB 0
pP,=| CAB, CB

CA”'B CA"?B ... CB

Note that in the repetition domain, the unknown sequence
of Markov parameters to be determined, CB, CAB, CA?B,
... appears naturally, Onc can make the following gencral
observations beforc procceding to the respective
algorithms.

Equation (8), in a succinct form, rclates the known
input-output data in terms of the sysiem Markov

parameters, and necessarily the quantities CAxj.1(0). If the

states x;+1(0) are known, then given a sufficiently long
sequence of input-output data, subject to some appropriate
conditions on the input sequence, the system Markov
parametcrs can be uniquely recovered. In general, however,

the states x;.1(0) arc not known. Equation (8) when
written for all available input-output data, represents a set

of under-determined equations, with the quantities x;.1(0)
as additional unknowns. Thercfore, the system Markov
parameters cannot be uniquely determined without
imposing additional constraints to the set of equations,
i.e., without assuming additional knowlcdge about the
system to be identified. In particular, we consider the
following cascs.

If the order of the system is cqual to the number of
outputs, and the system is observable, i.e., if C is squarc

and full rank, then with Ao= CAC™', the output
description (8) can be rewritten as

Yj+1 = Ao Yj+1 (0) + Polgj1 ©®

From Eq. (9) it is clear that subject to some usual
condition on the richness of input sequence, from a given
set of input-output data of sufficicntly long duration, the
Markov parameters can be uniquely determined.

There are various mcthods that can be employed to
solve for the Markov parameters from (9). Here, we are
particularly concerned with recursive algorithms.
Recursive algorithms offer some fundamental advantages
for this particular problem. Namely, they arc cfficient in
processing a large amount of data on-line. Furthermore,
recursive mcthods arc esscntially approximation mcthods
to solving the problem. As such they can be tailored to
solve for certain aspect of the problem without solving
the full problem as would be required by any exact
mcthod, which is some cases, may require exact solution
to a difficult non-linear problem. To solve (9) recursively,
first It the rows of Ao, Po be defined as

at(k)=[a(k-1).+1.1 Ak-1)asl2 -+ a(k-l)ul,n]T

pik) = [p(k-l)ml.l Plk-1)ne1,2 -+ P(k-l)n+l,:nk]T
where the subscripts on a and p denote the position of the

elcments in Agand Py respectively, 1=1,2,...,4. k=1,
2,..., p. The mk-dimensional input vector is defined as

m 11 =[ 01, j21(0) ... Um, js1(0) ... Bm jmr(k-1)]

Making usc of the above dcfinitions, Eq. (9) can be
cxpresscd as

w108 = & (B)yj1(0) + pi (Bt jr(k-1)  (10)
for all (/,k) pairs. Equation (10) rcpresents a sct of single-
output, multiple-input models in the repetition domain.

Grouping the unknown parameters together, Eq. (10) can
be rewritten as

(0 = pf ) i jer(k-1) an

where

pik) = [af(k) Pl (k)]T
b, jor(k-1) = [y,-fl(O) ik, ,-H(k-x)]r

The parameter cstimatcs of p; (k) at repetition j, denoted

by piik) can be updated recursively by various methods,
for example,

i) The Projection Algorithm:

~t At + , k - *T'k-l A*'- k
plj(k)=plj-l(k) + a]u,n‘l(k‘l) y’ j( ) ?ﬂl.]( )pl»l l( )
1+ 18T Vi (k1)

for all (/, k) pairs, 0 < aj < 2.,
ii) The Least Squares Algorithm:
Pritk) = pij-a(k) + Ri2(), (k-1)Apij(k)

) - B TP () ]
1+ " (k-DR;2(k)is, j(k-1)

Apiik) = {

R,'.z(k)u;,,(k-l)ufu:r,(k-l)Rj-z(k)}

Ria(k) = Ria(k) -

1+ - DR 2000w, (k1)
R.1(k) = alm x m, for some large o>0. In actual
implementation of this algorithm, covariance resetting
may be employcd to speed up the convergence of the
parameter estimates.



Other recursive algorithms can be easily incorporated
within this framework, and are not considered here for the
moment. One can analyze thc above algorithms to
establish the necessary condition on the input sequence to
guarantee that the estimated parameters do indeed converge
to the true values. For the present development, another
class of problems where recursive approximation methods
can be used to recover the system Markov parameters is
considered.

Consider a special class of problecms, where the
sysiem matrix A is known to be asymptotically stable. In
particular, p can be choscn 1o be sufficiently large such
that A* can be approximated to be zero for k 2 p. Then
the sequence of Markov parameters CB, CAB, CA? B, ...,

CA*'B can be recovered by the following method. First,
Eq. (8) is rewritten here for clarity and convenience

Yie1 = CAxjv1 (0) + Posyn (12)

We scek to write an expression for x;,,(0) from (7). Note
that (7) can be rewritten as

L=Ax.10)+Py 13)
which yiclds
xi(p) = APxj.1 (0)+[AP-IB AB B]w (14)
Defining
P@)=[ar1p ar2p AB 8]

and noting that xj(p) = xj,,(O), Eq. (14) becomcs
x+1(0) = A%x; (0) + P(p)u; ~ P(p)y; as

after making the approximation A? = Q. Substituting (15)
into (12) yiclds

Yi+1 =CAP(P)H;+ Poujd-l

(16)
_ i
=[car@) P.,][,,ﬂ]
Consider the product CAP(p)
CA
CA?
CAP@=|  |[ar'B a8 ... B B] (D
CAP!
cAP
CAPB  CA™'B CA’B  CAB
_| cA*'B caFB CA’B  CA’B
CA®'B CA®?B ... CA®'B CAPB

0 CA"'B CA’B CAB
o o CAP'B ... CA’B
0 0 0 0

after neglecting all terms involving p or higher powers of
A . Then

[cAP@) Po)=
0CA”'B CA’B CAB CB 0
0 CAP'B CA%B CAB . 0
: CB O
0 0 CA”'B cA”?p CB O
0 CAP'B ... ... CB
Defining
Psp)=[car's ... ca’B cB] (9

1o be the matrix of Markbv parénictcrs to be identified,
Eq. (16) thus beccomes

yiri®k) = Po(Plgjes (k1) , k=1,2,..,p (19

where 4;.1(k-1) is a mp-dimensional input vector defined
as

Bak-1) = 20
(@ - aToD. w5 af® - D]

To cstimate P(p) recursively, the rows of P (p) can be
recursively updated in parallel. Let y(k) denote the {-th
oulput at time step &, and p, dcnote the column vector
formed by the [-th row of Py(p), Eq. (19) becomes

yr.je1k) = pl oy (k-1) 1)

forl=1,2, .., q. Each I-th row of P,(p) is now updatcd
from input-output data associated with the I-th output at
time step k, k=1, 2, ..., p of repetition j+1, j+2, ... .
The resultant identificd parameters are smoothed both in
time and in repetition. Hence, the identification scheme
makes use of all available input-output data to arrive at
onc single sct of parameter estimates. Once the
identification is put into the form as in Eq. (21), a
recursive solution is simple, for example, the recursive
lcast squares estimale is

prik) = pra(k) + Ria(k)u, (k-1) Aprj(k)

k) - 5 Tk-1)pra(k)
1+ i’ T(k-1R;2(k)u] (k-1)

Apik) = [



Rj-2(k)u] (k- D] "(k-D)R;2(k)
14w’ T(k-1DR2(0) 1)

Rj1(k) = Rja(k) -

Note that in the above algorithm, the identificd system is
required to be asymptotically stable. In the following
development, this restriction will be removed.

Consider the system in Eq. (1). It has an observer of
the form

X(i+1) = Ax(i) + Bu(i) - M [()) - ()] o
= (A+MCO)x(i) + Bu(i) - My(i)
Defining the state estimation crror x(i) = x(i) - x(i), the
cquation that govems x(i) is
X(i+1) = (A + MC) x(i) 23

If M is chosen such that A +MC is asymptotically
stable, then the estimated state will converge to the true
state as / tends to infinity. If the system (1) is observable,
then M may be chosen so as to place the eigenvalues of
A +MC in any desired (symmetric) configuration. The
above is a Luenberger observer, a well-known result.
However, in our problem, the system matrices A, B, C,
and hence M are not known. Multiplying C to both sides
of (22) yiclds

;(i+1) = CTx(i) + CBu(i) - CMy(i) 24)
where for simplicity,
A=A+MC ‘

IfAis asymplotically stable, then for large i, ;(i) tends to
x(i), hence $(?) tends 10 y(i), then Eq. (24) becomes

y(i+1) = CAx(i) + CBu(i) - CMy(i)
= CAx(i) + CBV(i)

25)

where

B=[g .y] and v(i)=[;fg]

If A is asymptotically stable, then by the method
developed above for asymptotically stable system, the
Markov parameters of the observer equation,

CB, CAB, ..., CA*'B can be identificd. This can be
casily seen by noting that from (22) and (25) for

asymplotically stablc A and large i, the system in (22)
becomes

x(i+1) = Ax(i) + Bv(i)
¥(@) = Cx(i)

(26)

which when compared to (1), A, B, v(i) play the same
roles as A, B, u(i), respectively.

It is noted here that since Eq. (26) is derived from
(22), hence it can be interpreted in terms of an observer
equation. But in fact it is an ¢xact relation which always
holds true for any matrix M. Equation (26) can be derived
by simply adding and subtracting the product My(i) to the
right hand side of Eq. (1). Recall that if the sysicm (1) is
obscrvable, then there cxists at least a matrix M such that
the eigenvalues of A can be assigned in any arbitrary
symmetric configuration. Such an M is not necessarily
unique, but this poses no restriction to the present
problem. In the following development, the additional
freedom introduced by the matrix M will now be used to
derive a recursive algorithm to identify the Markov
parameters of the system in (26), i.e.,

_— — -1—
CB, CAB, ..., CA” B, and at the same time place the

cigenvalues of A in desired asymptotically stable
locations. Note, however, that the identified parameters
arc the observer system Markov parameters, but they will
be used to recover the desired actual system Markov
paramcters. This will be done in later sections.

Applying the technique devcloped before for
asymptotically stable system to the systcm in (26),

assuming for thc moment that A is asymplotically stable,
yiclds the corresponding version of (19)

yiri(k) = Pop)yin(k+1) , k=1,2,.,p (27

Po(p) and ¥+ 1(k-1) are defined as

PO =[ci™'5 ... ciF cB] @

and
+
2j+ I(k'l) = (29)
T
V@ e, 6@ vIm - vhGen)
where
o ={uw yw] (30)

The eigenvalue assignment procedure can be derived, first
by noting that for desired (real) eigenvalues of A, we have

for some T

A=T!AT @31



where

A= . 32)

Let 4,, 4, ..., 4, denote the desired cigenvalues of Ao
be sclected a priori. Then the product CX* B becomes

CA'B=CT'A*TB

33
- .
=C'A'B
If the elements of C” and B* arc written explicitly as
. L] *
C11C12--- Cia
L] L ®
« |eney--ic
c*| Heme
- . -
Cq1 Cq2++- Cqn
* ® L] » L ] &
buu bz .- bim -my-myz -~ -my,
- » L * * L]
Bn_ b2| bn bzm -Myy -Mag -+ ‘ng
* * L » *
bai baz - bam My My - -m:q

then in general, the I-th row of the matrix product in (33),
denoted 51“), is equal to
E,(k) =[ Z A‘#C;bi.l , E A;kC,:b,"z s Tty Z /‘likC&b:m s
i=1 i1 inl
id k » * d & * ud » »
- 2 Aicymgy , - Zli'kclimﬂ y Tty T z /'likf-‘umiq]
i=1 i=1 i=1
Let the {-th row of P (p) of equation (27) bc denoted as
pi', then the I-th output at time step & of repetition j+1,
denoted by yj.1(k), can be expressed as
i) = Pl sy (k-1) 349
where

ol =[=-1 -2 —(1) —(0)
P b? . B pn]
Notc that each E,m is a row vector, each with m+q sums.
Each sum has n terms. Together cach E,m has n(m+q)

terms of the products c;b:'g and c,;m,',‘. First, writc for m
inputs and g outpuis

w () =[ur, (k) w2, j(k) - um,;(K)]

Y ®=[y1, /0 y2. 0 - yo.40]

Notc that

us, j(k) Z lip-l(:,:b,'.l =
=]
ie
R I Lo
[C"bn cpbai--- Clnbul] 2 w1, (k)

At

With the following simplifying dcfinitions of the
unknown paramclcrs

ar=[chbl, chby - cob) 5

ﬁ"=[01‘1m1.; Cl'im;,: Cz:'";-:]
r=1,2,...,m; s=1,2,.¢

and a vector of the assigned eigenvalues

l("”=[1;’" At ;{,f:"]T (36)

Equation (34) can then can be expressed as

yi.j1(k) =

-
p-1 k-1
k74 p-1 s
an | Y A% g0+ 3 A%y ()
=k t=0 ]

-

p-1 k-1
+ap [T A%V 9+ Y A% Dy 0 (n)

[ v=1 =0 J
T 7} k-rep-1 kel k-1
+ 0 Z 2.( e )um,j(‘r) + 2 l( " )u»x,j+l(1)
T=k t=0

p-1 k-1
B Y ARy (S A%y a(e)

=k =0

p-1 k-1
_ ﬁ;’z‘ E l(k-f*p-l)yz"’(r).” Z A(k.r-l)yl'fkl(‘r)

t=1k T=0

p-1 k-1
- B | S A%y (n+ T ATy (D)

=1 t=0




or

yi. jr1(k) =

2 o
=1

’P_] k-1
Z 1('!-’*#'”"(.](1) + Z ﬂ.a"’”“g.hl(f)
_f- k » t=0 .

r',,.1 k-1
Y BT ATy + T A g a()

=1 t=k t=0

This equation can be simplificd furthcr by making the
following definitions

p-1 k-1

¢"j+[(k'l) = Z }u(k.ﬂp-nur,j(f) + z A(k-r-nur,hl(f)
tr=k t=0
p-1 . k-1
Ve jnk-1y= 3 A%y, 1+ T A%y, a0
=k t=0
Then it becomes
Y11 (k) = & @1 jpi(k-1) + - + Oy Om, ja1(k-1) an
- Bl wi (k1) - v - Big W jma(k-1)
. jer(k-1) ]
_ . ¢m,j+1(k'l)
'[0‘111 A -BE o 'lszv] v, jr1(k-1)
| Vg, j+1(k-1) |

By making obvious definitions for y [, and Isi(k-1), the
above equation becomes simply

i, j+1 (k) = ¥ Fjk-1) (38)

for[=1,2,.., ¢q. The above sct of equations is in lincar
form, with unknown (timc-invariant) obscrver paramcler

vector y: and known "input” vector Ij+1(k-1), thercfore 7:
can bc solved for in one siep, or recursively. Any
appropriatc method to solve lincar cquations can be used.
For cxample, the recursive Icast squares solution to (38)
can bc writtcn down immediatcly for the I-th row of

C"A*B”, which corrcsponds to the I-th output, as

7. 4K) = T j-1(k) + Ria(O)Tk-1)4%, (k)

Y AK) - TGP 11(6) }
1+ I} (k- DR 2(k) (k- 1)

(39

AR, k) = [

Ria(k) = Ri2(k) - {Rf'z("m("-‘)ﬂ’(k-l)R,-.z(k)
1+ I (k- DR 2()T(k-1)

The abovc algorithm in (39) identifics the observer
paramcters 1 which consists of oy, ap, ..., Qm, Bu,
ﬁIZ' orr ﬁlq- Each ay, ap, ﬁn, ﬂn, ... in turn conlains
certain products of the elements of C*and B', e.g.,

cnbi, chmiy, ... .These products together with the
assigned cigenvalues 4,, 4, ..., 4, can bc uscd o
construct the /-th row of the observer Markov parameters

CA kl_l, Thus any row of the observer Markov parameter
for any given k can be computed. Hence a complete set of

the parameters CB, CAB, ..., CA”"'B can be identified.
Furthermore, note that Eq. (38) is true forall k=0, 1, 2,
.. p; andj=1, 2, 3, ... hence the identificd y, which is
then used to recover the I-th row of CA*B is smoothed
over all k and j. Note that Eq. (27) is simply an ARMA
model of the system, and the observer Markov parameters
are precisely the matrix coefficients of this ARMA model.
Through the embedded eigenvalue assignment procedure,
the ARMA model is made asymptotically stable by
design. It is the stabilizing property of this model that
allows a straight forward application of existing parameter
estimation techniques to identify its matrix coefficients.
What remains 1o be done is to recover the actual Markov
paramctcrs of the open loop system from thesc identified
matrix coclficicnts.

In the following a procedure to recover the actual
system Markov parameters is presented for the general
casc of multiple-input, multiple-output systcms. First,
recall that A = A +MC, B= [B, -M ], and thc Markov
parameters of the obscrver system are now known from
the identification algorithm developed above. For ease of
prescntation, the following definitions are made

Yo=CB=[cB, -CM]

(7, 7]
(40)

Fi- =[5
and similarly for Y2, Y3, ... From the first equation in

(40), the first Markov parameter of the actual system,
Yo= CB, is simply

Yo=Tao @n
Next, consider the product C AB
CAB=CA+MO[B , -M]
=[CAB + CMCB , -(CAM +CMCM)]

(7, #7)



Hence, the second system Markov parameter Y1 = CAB
can be computed as
= CAB

1 2
=¥’ - 73"

“@2)

To obtain an expression for Y2 = CA®B, consider the
product Y; = C/T2 B

CA’B = C(A+MC)*[B ,-M]
1 2
-7 7]
Thus
730 = C(A + MO)®B
= CA’B + (CM)CAB + (CAM + CMCM)CB

Hence

Y= CA U}
_70

@3)

2
)+)7(0)Y1+Y| Yo

Similarly, an expression for Y3 can be obtained from Yy

as

Ys= CA®B

1 2 2 2
=Y3 4+ Yo Y2+ Vi0Y) + Y3 Y0

@4)

By induction, the gencral solution for the actual system

Markov parameters Y, = CA*B can be writien as a
convolution product of its previous valucs and the
Markov parameters of the observer system as

_ k
le-CAB’k1 @5)

=)7(k1)+ 2 ﬁZ)Yk-l-i

i=0

Oncc the Markov paramcters arc identificd, a
rcalization proccdurc such as ERA can be applicd to
obtain a rcalization ol thc systcm matrices. Physical
aspects of the model such as natural frequencies, damping
ratios, modc shapes can then be found.

EXAMPLES

In this scction numcrical cxamples are presented to
illustratc the above developed identification algorithm.
Recall that in this formulation, for the multivariable case,
all the couplings between the outputs are expressed in the
"input" vectors. Hence for cach output, the multiple-input
multiplc-output (MIMO) problem is trcated as a multiple-

input single-output (MISQ) problem. The results are then
combined for MIMO identification. Multiple-input single-
output problems, however, arc essentially similar to
single-input single-output (SISO) problems, thercfore the
algorithm can be best illustrated by first considering the
SISO case.

EXAMPLE 1: Consider a fourth-order single-input single-
output system in observable canonical form driven by a
random input sequence

0 0 0 -0.305 1

ad100-0110 p_|o| o
010-0110 1 C=looo 1
001 0000 1

The first 30 Markov parameters are to be identified. The
number of time step in each interval is thus choscn to be
p = 30. With a 90-time step input-output history, this
results in 3 available repetitions for leaming. In this
example, the eigenvalues chosen are £0.6 and £0.7. In
fact, any real, distinct value 4; with magnitude less than

onc can be used as long as 4/ is sufficicntly small to
allow for accuraic identification. In this cxample, the
standard least squarcs method is employed, and
convergence of the identificd obscrver parameters is shown
in Figurc 1. With these parameters, the observer Markov
parameters are construcied, and then used to recover
correcly the system Markov parameters. This is shown in
Table 1.

EXAMPLE 2: The algorithm is applied to identify a state
space model of a mass-spring-dashpot system, This is a
sixth-order system with three inputs and three outputs
with the discrete-time system matrices given as

0.9691 0.0154 0.0001 0.2120 0.0014 0.0000
0.0154 0.9690 0.0155 0.0014 0.2139 0.0014
A =| 0.0000 0.0077 0.9768 0.0000 0.0007 0.2127
-0.2817 0.1395 0.0009 0.9458 0.0180 0.0001
0.1401 -0.2838 0.1412 0.0180 0.9134 0.0182
0.0005 0.0699 -0.2122 0.0000 0.0091 0.9544

0.0232 0.0001 0.0000

0.0001 0.0233 0.0001
B =| 0.0000 0.0000 0.0232 ’C=[(1) (1) 8 g 8 g}
0.2120 0.0014 0.0000 001000

0.0014 0.2139 0.0014
0.0000 0.0007 0.2127

The first twenty five Markov paramecters are to be
identified, thus p is chosen 10 be 25. Using a single time
history of 100 time steps under random input excitation,
this yiclds four repetitions for lcarning. Assuming for the
moment, the true order of the system, n = 6, is known.
The eigenvalues for the observer are placed at 10.2,
+0.3, and 10.4. The observer equation parameters
corresponding to each output are first identified, and then
the results oombmcd to recover the actual system Markov
arbllranly selected observer parameter cstimates
corrcsponding 1o the first output. Results for the two



remaining outputs are similar, and not shown here. The
algorithm correctly identifies all desired Markov
parameters, each is a 3 x 3 matrix,

The Eigensystem Realization Algorithm (ERA) is
then applied to decompose the identified Markov
paramcters to obtain a set of realized system matrices
which is equivalent to the set (A, B, C) above. They are
listed here in that order as follows. '

0.9971 0.0561 0.0238 0.0606 -0.0049 0.1166
-0.0553 0.9406 0.1879 -0.1115 -0.0291 0.0289
-0.0357 -0.1762 0.9878 -0.0341 0.1757 0.0753
-0.0497 0.1321 0.0173 0.9725 0.2365 -0.0193
0.0113 0.0232 -0.1827 -0.2027 0.9207 0.0923
-0.1178 0.0050 -0.0703 0.0326 -0.1105 0.9600

0.2015 0.2770 0.2140
-0.1835 -0.0138 0.3051
0.0380 -0.1269 0.2732
0.2712 0.0430 -0.1038
0.1925 -0.2085 0.0613
0.1514 0.2515 0.1813

0.1804 -0.2296 0.2651 -0.0293 -0.1461 -0.1934
0.2757 -0.1481 -0.1093 -0.3034 0.1177 -0.1246
0.2309 0.2355 -0.1408 0.1200 0.0625 -0.2810

Now, consider the identification algorithm used in
Example 2, but this time the system order is assumed
incorrectly. First, the systcm is over-estimated to be of
cighth-order. This calls for two additional cigenvalues in
the algorithm, here chosen to be £0.25. Note that since
the assumed order of the systcm is higher, there are more
paramcicrs o be identified. However, at the final step, the
algorithm correctly identifies the true order of the system
and recovers all desired Markov parameters of the open
loop system. This means that over-parameterization docs
not affect the final result. Second, the system is under-
cstimated to be only of sccond-order. This reduces the
number of parameters to be identificd substantially. Yet,
again, the true order of the system and all the Markov
paramelers arc recovered correclly at the final step. This
indicates that under-estimation of the system order docs
not lead automatically to incorrect identification. Correct
results arc also obtained when the order of the system in
this example is under-estimated to be 5, 4, or 3. The
algorithm fails when the order is assumed to be 1, which
is obviously an erroncous over-simplification. The
identificd obscrver parameters are diffcrent under diffcrent
order assumptions, yet they yield the same result in the
final reconstruction of the actual system Markov
paramclers.

EXAMPLE 3: In the absence of noise, the identified
valucs arc found to be practically identical to the actual
values. In the deterministic theory, this error can be made
arbitrarily small simply by choosing p to be sufficicntly
large, and the cigenvalues 4, sufficiently small such that
the approximation in deriving Eq. (27) is valid. With
regard to identification accuracy in the presence of noise,
more cffcctive recursive identification methods, e.g., the

instrumental variable mcthod, can be used to replace the
standard least squares method at one stcp in this
identification procedure. For example, consider the case in
Example 1. When the output data is corrupted by about
12% measurement noise, the standard recursive least
squares mcthod lcads to biased results which can be
correcied by using the instrumental variable mcthod
instcad. Figure 3 shows this improvement in the accuracy
of some arbitrarily selected identified obscrver parameter
cstimatcs.

CONCLUSIONS

This paper formulates an algorithm for identification
of lincar multivariable systems from a one sct of input-
output data. Instead of identifying the system directly, the
proposed scheme identifics an observer for the system,
whose poles can be assigned by an embedded real
eigenvaluc assignment procedure. Recursive techniques
are used to estimate the matrix coefficicnts of an auto-
regressive moving average model formed from this
obscrver. These matrix coefficients are preciscly its
Markov parameters. From the identified obscrver Markov
paramcters, the true system Markov paramecters are
recovered through simple algebraic relations, and then
used to obtain a rcalization of the system of interest. For
modal identification, the modal paramectcers such as natural
frequencics, modal damping, and mode shapes of the open
loop system can then bc found. Preliminary rcsults
indicates that the deterministic algorithm is fast and
accurate. Stochastic aspects of the procedure is currently
under investigation.
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APPENDIX

Table I: Identification of Markov Parameters of a Single-Input

Single-Output System

IDENTIFIED RECONSTRUCTED IDENTIFIED ACTUAL
OBSERVER OBSERVER MARKOV MARKOY
PARAMETERS  MARKOV PARAMETERS  PARAMETERS PARAMETERS
-10.1021 1.0000 0.0000 0.0003 0.0003
7.3337 1.0000  -0.9600 -0.0005 -0.0005
10.0710 0.8499  -0.1100 -0.0012 -0.0012
-6.3025 18500  -0.9446 -0.0015 -0.0015
-3.4628 0.5460  -0.0935 0.0000 0.0000
26168 1.39%61 -0.6336 0.0023 0.0023
343 03142 -0.0601 0.0030 0.0030
-2.8682 0.8603  -03719 0.0031 0.0031
0.1707  -0.0346 -0.0022 -0.0022
04850  -0.2044 -0.0080 -0.0080
0.0897  -0.0188 -0.0062 -0.0062
0.2605  -0.1081 -0.0051 -0.0051
0.0461 -0.0099 0.0114 0.0114
0.1359  -0.0558 0.0239 0.0239
0.0234  -0.00s51 0.0077 0.0077
0.06Y5  -0.0284 0.0054 0.0054
00117  -0.0026 -0.0422 -0.0422
0.0351 -0.0143 -0.0652 -0.0652
0.0059  -0.0013 0.0135 0.0135
0.0176  -0.007! 0.0009 0.0009
0.0029  -0.0006 0.133] 0.1331
0.0088  -0.003S 0.1654 0.1654
0.0014 -0.0003 -0.1519 -0.1520
0.0043  -0.0018 -0.0079 -0.0079
0.0007  -0.0002 -0.3787 -0.3787
0.0021 -0.0009 -0.4029 -0.4029
0.0003  -0.0001 0.7800 0.7800
0.0011 -0.0004 -0.1100 -0.1101
0.0002  -0.0000 1.0000 1.0000
0.0005  -0.0002 1.0000 1.0000
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